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Abstract1

The regulation of fate decisions in progenitor cells lays the foundation for the2

generation of neuronal diversity and the formation of specialized circuits with remark-3

able processing capacity. Since the discovery more than 20 years ago that inhibitory4

(GABAergic) neurons originate from progenitors in the ventral part of the embryonic5

brain, numerous details about their development and function have been unveiled.6

GABAergic neurons are an extremely heterogeneous group, comprising many spe-7

cialized subtypes of local interneurons and long-range projection neurons. Clearly8

distinguishable types emerge during postmitotic maturation, at a time when precursors9

migrate, morphologically mature, and establish synaptic connections. Yet, differentia-10

tion begins at an earlier stage within their progenitor domains, where a combination of11

birthdate and place of origin are key drivers. This review explains how new insights12

from single-cell sequencing inform our current understanding of how GABAergic13

neuron diversity emerges.14
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Introduction15

Brain computation relies on dynamic interactions between excitatory and inhibitory neuronal circuits16

(1). Inhibitory neurons, which produce the neurotransmitter Gamma-aminobutyric acid (GABA), are17

highly diverse and can be identified by morphological features, subcellular targets, neurochemical18

markers, firing patterns, and gene expression profiles (2). In the visual cortex of mice alone, more19

than two dozen different types have been identified based on a combination of morphological,20

electrophysiological, and transcriptomic features (3). Inhibitory neurons can act locally, or they21

can extend long-range axons to remote cortical and subcortical areas (4). In the cerebral cortex, a22

majority of inhibitory neurons are interneurons that are an integral part of the cortical circuit, as they23

reciprocally connect to other cortical neurons. This local inhibition orchestrates both spontaneous24

and sensory-driven activity in the cerebral cortex(1), and for example allows neurons to synchronize25

their firing, giving rise to rhythmic oscillations of activity (5). GABAergic projection neurons26

primarily populate subcortical regions such as the striatum, globus pallidus, and the amygdalar27

complex, and they often work as an integrating hub. Spiny projection neurons of the striatum,28

for example, receive glutamatergic inputs from different cortical and thalamic areas, and send29

GABAergic projections to neighboring basal ganglia nuclei (6). These projections are thought to30

contribute to motivated behavior, reward learning and decision-making (7; 8).31

GABAergic neurons are developmentally derived from proliferative zones in the ventral telen-32

cephalon: the medial ganglionic eminence (MGE), the caudal ganglionic eminence (CGE), the33

lateral ganglionic eminence (LGE) and the preoptic area (9; 10; 11) (Figure 1). Because of the34

large number of different cell types they each produce, the ganglionic eminences (GEs) represent35

a fascinating study object for how cellular diversity emerges. For example, the MGE and CGE36

produce many distinct types of interneurons in the cortex, striatum, and hippocampus (12; 13; 14).37
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Figure 1: Origins of inhibitory cell types. Inhibitory projection neurons and interneurons are born in the
ganglionic eminences. Schematic demonstrating the cell types that the medial, caudal and lateral ganglionic
eminences (MGE, CGE and LGE, respectively) produce and the brain structures they occupy.
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In addition, the MGE generates prototypic neurons of the globus pallidus (15), basal forebrain38

cholinergic neurons (16), and the CGE contributes to numerous amygdala nuclei (17). The LGE39

generates direct and indirect spiny projection neurons of the striatum (18), arkypallidal neurons of40

the globus pallidus(15), olfactory bulb interneurons(18), as well as neurons of the olfactory tubercle41

and amygdala (19) (Figure 1). Although most neurons that originate from the GEs are GABAergic,42

the GEs also generate cholinergic neurons as well as glia (20; 21; 22). Intensive efforts have been43

made to link properties of progenitors within the GEs to cell fate of their progeny. These include44

mode of cell-division (23; 24), time of cell-cycle exit (25; 26; 24)), cell-cycle length (27; 28; 29),45

progenitor heterogeneity (30), spatial subdomains and transcription factors that transduce patterning46

signals (31; 32; 33; 13; 34; 9; 35; 20; 36; 37). All these factors seem to act concurrently to produce47

neuronal heterogeneity. This review focuses on recent work that has employed single-cell omic48

methods to shed new light on the sequence of events that lead to the emergence of GABAergic49

diversity.50

Developmental diversification of cortical interneurons51

Cell type heterogeneity arises through a series of cell proliferation and differentiation events. An52

early mitotic phase generates a neuroproliferative layer surrounding the ventricles of the neural53

tube. This layer contains the so called radial-glia progenitors and intermediate progenitors that54

undergo their final rounds of cell-division, which generates postmitotic neurons, astrocytes, and55

oligodendrocytes (38; 39). Postmitotic precursors migrate to their final settling positions (40; 41),56

where they grow specific morphologies (42) and integrate into circuits. Single-cell RNA sequencing57

(scRNA-seq), a technique that allows the study of quantitative relationships between cell types, has58

been used to explore when during development the identities of GABAergic types emerge. Some59

of the gene expression signatures of differentiated cell types have already been found in neurons60
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Figure 2: Developmental diversification of inhibitory neurons. Schematic of a two-dimensional representation
of cell type heterogeneity in single-cell gene expression experiments. Characterization of gene expression
in single cells allows quantification of cell type heterogeneity at different time points. Cells are colored by
site of origin (MGE purple, CGE green, LGE blue). Different cell types become increasingly distinct from
each other during development; as a result, clearly distinguishable clusters emerge in single-cell transcription
experiments. Clusters that unambiguously group cells according to a cell’s site of origin do not form until
shortly before birth.

that have just exited the cell cycle in the scRNA-seq studies. For instance, all major classes of61

cortical interneurons were distinguishable in postmitotic neurons of scRNA-seq datasets of the GE62

at embryonic day 13. Furthermore, signatures of GABAergic projection neurons, and cholinergic63

neurons that mature to form pallidal structures, were also distinguishable (43; 44). However,64

refinement of clusters within theses broad classes unfolded over a lengthy period of time (Fig.2)65

and temporally coincided with developmental processes such as migration (45), morphological66

maturation (42), synaptogenesis (46) and the emergence of sensory-driven network activity (47).67

Surprisingly, using highly variable genes for feature selection, as is commonly used in scRNA-seq68

analysis, did not separate proliferating cells in a way that could be linked to adult cell types. And69

similarly, diffusion map analysis of E13 MGE scATAC–seq datasets showed that interneuron70

type-specific opening of chromatin at distal elements was first seen when cells exited the cell cycle71

(48). Only through the use of a curated approach, which combined enhancer-based cell labeling and72
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transcription factor-anchored scRNA-seq clustering, was it possible to increase the resolution of73

regional and developmental populations in mitotic cells to a level where spatially defined subtypes74

of MGE-derived GABAergic projection neurons and interneurons could be distinguished (49).75

Trajectory estimation in the GEs76

Cluster analysis methods aim to assess heterogeneity in a tissue by categorizing cells into groups.77

Embryonic brain tissue, however, typically consists of a continuum of cell states along maturation78

and differentiation axes, rather than discrete states. Many analysis tools have been developed that79

can provide high-resolution descriptions of cell trajectories as they transition between states (50).80

These tools have been used to explore scRNA-seq (43; 51; 52), single-nucleus (53) and single-cell81

ATAC-seq datasets of the GEs, both in mouse (48) and human (54) (Figure 3). In the GEs, the82

progression along pseudotime largely recapitulates known maturation markers, from Nestin and83

Ccnd2 expressing cycling progenitors to Dcx, Gad1 and Dlx6 expressing postmitotic neurons (43; 48;84

51; 52). Consistent with cluster-based approaches, fate bifurcations along the maturation trajectory85

occurred when cells became postmitotic (Figure 3). These early bifurcations, or ”precursor states”,86

already exhibited a clear transcriptomic signature linking them to adult cell types. When precursor87

states from each GE were compared to one another, they displayed similar gene expression profiles88

(43) (Figure 3). This was very surprising because in the adult brain, the MGE, CGE and LGE89

produce distinct non-overlapping cell types. Why then would the GEs utilize common precursor90

states along their maturation trajectories? Each GE produces both locally projecting interneurons91

as well as long-range projection neurons. The common precursor states present in the GEs might92

initially act as a conserved regulatory program for generating these very different neuron classes.93

Only later in development, once precursors have embarked on a path towards differentiated neurons,94

do eminence-specific factors become a major source of heterogeneity (43).95
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Figure 3: A trajectory describing the transition between cell states. Schematic of developmental trajectories
of single-cell transcriptomes from the GEs. Fate bifurcations occur when progenitors exit the cell cycle.
Different shapes (triangle, circle, square, hexagon, star) denote different precursor states (or branches), which
initially show similarities between the GEs. Lineage barcoding methods have revealed that a single progenitor
can produce daughter cells occupying different precursor states.
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While trajectory estimation offers a population-level view of differentiation, it does not directly96

reveal relationships between individual cells. Do the progeny of a single progenitor enter the same97

precursor state, or disperse across multiple states? A way to link a mitotic progenitor and its progeny98

is with lineage tracing, by labelling an individual progenitor at an early time point and tracking the99

cell-states their clonal progeny differentiated into at a later time point. A recent study using synthetic100

oligonucleotides to tag progenitors and their descendants in the GEs found that, in about one-third101

of cases, clones disperse into different precursor states when they leave the cell-cycle. For example,102

a single LGE progenitor produced olfactory bulb interneurons, striatal spiny projection neurons,103

and intercalated cells of the amygdala. Thus, at least a subset of GE progenitors are multipotent,104

generating transcriptomically and anatomically disparate cell types (51). Whether the sequential105

production of different types involves stochastic events that occur during cell-cycle exit, or follows a106

stereotypic sequence, remains unknown.107

Comparisons between species108

The major cell classes of inhibitory neurons classified in mice have been identified in reptiles (55),109

nonhuman primates (56) and humans (57). Recently, however, a number of differences have come110

to light. For example, several primate-specific cell types have been discovered, such as the ”rosehip”111

interneurons in the cortex (Boldog et al 2018), a TAC3-expressing population of interneurons in the112

striatum (58), and TH-expressing neurons of the striatum laureatum (56). Other features, like the113

laminar positioning of cell types, the proportions of cell types, gene expression profiles (58), and114

even lineage relationships (59) have been found to be different in primates. In development, many115

gene regulatory networks and transcription factors are the same in mouse and human inhibitory116

neurons (60; 54; 61; 62; 63). As in mice, the fates of inhibitory neurons, such as GABAergic117

interneurons and different projection neurons, are established already in fetal human ganglionic118
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eminences (54; 62). In the future, a more detailed comparison of gene regulatory relationships119

between mice and primates should provide insight into previously unknown regulatory processes120

driving the diversification of neurons. This has great potential to provide valuable insights into121

the development and function of these neurons, as well as their role in neurological disorders and122

diseases.123

Summary/Conclusions124

In this review, we explore the processes underlying inhibitory neuron diversification, with a focus125

on recent studies employing single-cell omic methods. Different GABAergic cell types arise126

from regional differences in the specification of GE progenitors, which are initially established by127

morphogenic molecules such as retinoic acid (64), fibroblast growth factors and sonic hedgehog (65;128

66; 67; 68). While single cell omic techniques have offered valuable insights into cell maturation and129

differentiation, they have not explained the underlying mechanisms by which spatial and temporal130

signals influence cell fate decisions. Transcription factor activity can be highly context-dependent.131

TALE transcription factors, for example, which are expressed in the ganglionic eminences, have132

been shown to act as broad activators of homeobox genes (69) and to interact with other transcription133

factors such as PBX, HOX, TBX, and Pax6 to promote differentiation in limbs, heart, lens, hindbrain,134

and olfactory bulb development (70; 69; 71; 72; 73). It is possible that such factors interact with135

spatial cues to selectively activate enhancers in different parts of the ganglionic eminences. To better136

understand the role of spatial selective enhancer activation in the early determination of GABAergic137

identities, additional methods such as reporter assays may provide a more detailed and mechanistic138

understanding of how early spatial signals shape cell fate decisions. Moreover, methods that map139

protein-DNA interactions, such as CUT&RUN, could be used to study where transcription factors140

bind within select groups of GE progenitors, and how differential access to transcriptional regulatory141
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elements is controlled during development.142

Single-cell omics experiments have shown that the vast majority of cell type-specific heterogeneity143

in gene expression occurs during a prolonged period of postmitotic development, toward the end of144

embryogenesis and after birth (43; 44; 74). This coincides with the developmental stage at which145

morphological maturation, synaptogenesis, and the specification of electrophysiological properties146

occur. This raises the important question as to what extent the manifestation of heterogeneity follows147

a prescribed unfolding of programs initiated in embryonic progenitor zones, and what role, in148

contrast, environmental interactions play. Mounting experimental evidence shows that environmental149

stimuli play an important role. For example, Lim et al. (2018) (45) showed that environmental cues150

can influence the migration and differentiation of neural stem cells during development. Similarly,151

De-Marco-Garcia et al. (2011) (42) found that electrical inputs can modulate gene expression in152

developing neurons. However, many questions remain about the relative importance of intrinsic153

and extrinsic processes in shaping gene expression patterns, and the mechanisms through which154

these processes interact. It is not yet clear whether certain subtypes are more influenced by extrinsic155

signals than others, or how extrinsic signals interact with evolving gene regulatory networks. Further156

experimentation is needed to fully understand these complex processes and how they contribute to157

the development of cell-types. Single-cell omics, with their quantitative nature, provide a unique158

opportunity to explore the effect of environmental influences on the development of interneurons.159

As major inhibitory neuron types can already be identified within the GEs before migration or160

synaptic wiring, the initial formation of these cell types is likely a cell intrinsic process. Using161

genetic approaches to manipulate environmental factors (e.g. early brain network activity or sensory162

inputs) in a cell type-specific manner and analyzing the effect with single-cell omics would allow for163

the precise determination of how, when, and to what extent different subtypes of GABAergic neurons164

require environmental influences for their maturation. Such experiments may provide insights into165
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the complex process of interneuron differentiation and how it is shaped by environmental factors166

during development.167

We have summarized the processes that lay the foundation for cell type heterogeneity proliferating168

cells. These processes range from spatial gradients and temporal signals to clonal dispersion of169

individual progenitors. Together, these processes could form a combinatorial framework that170

facilitates the emergence of neuronal diversity. It is not clear whether these processes work together,171

like the cogs of a clock, or whether they run in parallel and largely independently of each other.172

A hint is provided by the clonal dispersion into precursor states upon the cell-cycle exit: similar173

precursor states emerge in all GEs, differing only in a relatively small amount of domain-specific174

gene expression. Thus, a universal mechanism might generate precursor states in all GEs, to which a175

local identity is imbued by region-specific signals. This is an interesting possibility, but new studies176

are needed to test these hypotheses. Such studies should provide a comprehensive picture of how177

the different processes cooperate to ultimately establish cellular identity and connectivity in the178

adult brain.179

Acknowledgements180

We thank members of the Mayer laboratory for feedback and discussion and Julia Kuhl (some-181

donkey.com) for illustrations. This work was supported by the Max-Planck Society, the European182

Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation183

program (ERC-2018-STG, grant agreement no. 803984)184

Short title185

Inhibitory neuron development: the paths to diversity186

11



Bandler and Mayer

References187

[1] J. S. Isaacson and M. Scanziani, “How inhibition shapes cortical activity,” Neuron, vol. 72,188
no. 2, pp. 231–43, Oct 2011.189

[2] A. Kepecs and G. Fishell, “Interneuron cell types are fit to function,” Nature, vol. 505, no.190
7483, pp. 318–26, Jan 2014.191

[3] N. W. Gouwens, S. A. Sorensen, F. Baftizadeh, A. Budzillo, B. R. Lee, T. Jarsky, L. Alfiler,192
K. Baker, E. Barkan, K. Berry, D. Bertagnolli, K. Bickley, J. Bomben, T. Braun, et al.,193
“Integrated morphoelectric and transcriptomic classification of cortical gabaergic cells,”194
Cell, vol. 183, no. 4, pp. 935–953.e19, 11 2020.195

[4] A. Caputi, S. Melzer, M. Michael, and H. Monyer, “The long and short of gabaergic neurons,”196
Curr Opin Neurobiol, vol. 23, no. 2, pp. 179–86, Apr 2013.197

[5] S. Royer, B. V. Zemelman, A. Losonczy, J. Kim, F. Chance, J. C. Magee, and G. Buzsáki,198
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J. Schramm, M. Götz, and D. Schulte, “Meis2 is a pax6 co-factor in neurogenesis and462
dopaminergic periglomerular fate specification in the adult olfactory bulb,” Development,463
vol. 141, no. 1, pp. 28–38, Jan 2014.464

[74] E. Favuzzi, R. Deogracias, A. Marques-Smith, P. Maeso, J. Jezequel, D. Exposito-Alonso,465
M. Balia, T. Kroon, A. J. Hinojosa, E. F Maraver, and B. Rico, “Distinct molecular466
programs regulate synapse specificity in cortical inhibitory circuits,” Science, vol. 363, no.467
6425, pp. 413–417, Jan 2019.468

Papers with special interest (*) or outstanding interest (**) for this review were selected and469
annotated.470

19


